燒結銀膠的燒結原理是基于固態擴散機制和液態燒結輔助機制。在固態擴散機制中,當燒結溫度升高到一定程度時,銀原子獲得足夠的能量開始活躍,銀粉顆粒之間通過原子的擴散作用逐漸形成連接。在燒結初期,銀粉顆粒之間先是通過點接觸開始形成燒結頸,隨著原子不斷擴散,顆粒間距離縮小,表面自由能降低,頸部逐漸長大變粗并形成晶界,晶界滑移帶動晶粒生長 ,坯體中的顆粒重排,接觸處產生鍵合,空隙變形、縮小。在燒結中期,顆粒和顆粒開始形成致密化連接,擴散機制包括表面擴散、表面晶格擴散、晶界擴散和晶界晶格擴散等,顆粒間的頸部繼續長大,晶粒逐步長大并且顆粒之間的晶界逐漸形成連續網絡,氣孔相互孤立,并逐漸形成球形,位于晶粒界面處或晶粒結合點處。TS - 1855 加工性好,封裝高效從容。多種合金選擇燒結銀膠服務熱線
TS - 9853G 還對 EBO(Early Bond Open,早期鍵合開路)進行了優化。在電子封裝過程中,EBO 問題可能會導致電子元件之間的連接失效,影響產品的可靠性。TS - 9853G 通過特殊的配方設計和工藝優化,有效降低了 EBO 的發生概率。它在固化過程中能夠形成更加均勻和穩定的連接結構,增強了銀膠與電子元件之間的結合力,從而提高了產品的長期可靠性 。在功率器件封裝中,即使經過多次熱循環和機械振動,TS - 9853G 依然能夠保持良好的連接性能,減少因 EBO 問題導致的產品失效,為功率器件的穩定運行提供了有力保障。化學燒結銀膠價目表半燒結銀膠,平衡性能與成本。
全燒結銀膠是 TANAKA 高導熱銀膠產品中的品牌系列,具有一系列突出的優勢。在生產過程中,全燒結銀膠需要經過高溫烘烤,這一過程使得銀顆粒之間能夠形成更完整的導電路徑,從而具有極高的電導率。同時,其粘合力和耐腐蝕性也非常強,能夠在極端的工作環境下保持穩定的性能。TS - 985A - G6DG 作為 TANAKA 全燒結銀膠的展示產品,導熱率高達 200w/mk 以上,展現出優異的散熱性能。從性能參數上看,除了超高的導熱率外,它還具有極低的熱阻,能夠快速地將熱量傳遞出去,有效降低電子元件的工作溫度。在導電性方面,其體積電阻率極低,能夠滿足對電氣性能要求極高的應用場景。
在新能源汽車領域,三種銀膠也有著各自的應用。高導熱銀膠可用于電池模塊中電芯與散熱片的連接,幫助電芯散熱,提高電池的充放電效率和使用壽命。在新能源汽車的電池組中,高導熱銀膠能夠將電芯產生的熱量快速傳遞到散熱片上,避免電池過熱,保證電池的性能和安全性。半燒結銀膠在電機控制器等部件中應用大量。電機控制器在工作時會產生大量熱量,對散熱和可靠性要求很高。半燒結銀膠能夠有效地將熱量導出,同時保持良好的電氣連接,確保電機控制器在復雜的工況下穩定運行。不同銀膠型號,散熱效果有別。
燒結銀膠則常用于對散熱和電氣性能要求極高的重要部件,如 5G 基站的功率放大器模塊。功率放大器在 5G 通信中需要處理高功率信號,對散熱和可靠性要求極為嚴格。燒結銀膠的高導熱率和高可靠性能夠確保功率放大器在高功率運行時的穩定工作,提高信號的放大效率和傳輸質量 。在 5G 通信中,銀膠的散熱和導電優勢十分明顯。它們能夠有效地解決 5G 設備在高功率、高頻運行時的散熱問題,保證信號的穩定傳輸,提高通信質量和設備的可靠性,為 5G 通信技術的發展提供了有力的材料支持 。航空航天靠它,散熱穩定運行。多種合金選擇燒結銀膠服務熱線
高導熱銀膠,實現電氣與導熱雙重連接。多種合金選擇燒結銀膠服務熱線
半燒結銀膠在電機控制器等部件中應用很廣。電機控制器在工作時會產生大量熱量,對散熱和可靠性要求很高。半燒結銀膠能夠有效地將熱量導出,同時保持良好的電氣連接,確保電機控制器在復雜的工況下穩定運行 。在新能源汽車的高速行駛過程中,電機控制器需要頻繁地進行功率調節,半燒結銀膠能夠在這種情況下可靠地工作,保障電機的正常運行 。燒結銀膠則常用于對性能要求極高的關鍵部件,如逆變器中的功率芯片封裝。逆變器是新能源汽車的重要部件之一,其性能直接影響汽車的動力性能和續航里程。多種合金選擇燒結銀膠服務熱線