在光通信技術向超高速率演進的進程中,多芯MT-FA(多纖終端光纖陣列)作為1.6T/3.2T光模塊的重要組件,正通過精密的工藝設計與材料創(chuàng)新突破性能瓶頸。其重要優(yōu)勢在于通過多路并行傳輸架構實現(xiàn)帶寬的指數(shù)級提升——以1.6T光模塊為例,采用8×200G或4×400G通道配置時,MT-FA組件需將12根甚至更多光纖精確排列于亞毫米級空間內(nèi),通過42.5°端面全反射工藝與低損耗MT插芯的配合,確保每通道光信號在0.1dB以內(nèi)的插入損耗。這種設計不僅滿足了AI訓練集群對單模塊800G以上帶寬的需求,更通過高密度集成將光模塊體積壓縮至傳統(tǒng)方案的60%,為交換機前板提供每英寸超24個端口的部署能力。在3.2T場景下,技術升級進一步體現(xiàn)為單波400G硅光引擎與MT-FA的深度耦合,通過薄膜鈮酸鋰調(diào)制器實現(xiàn)200GHz帶寬支持,使光路耦合格點誤差控制在±0.3μm以內(nèi),明顯降低分布式計算中的信號衰減。多芯MT-FA光組件的抗硫化設計,適用于化工園區(qū)等惡劣環(huán)境部署。貴州多芯MT-FA光組件在數(shù)據(jù)中心互聯(lián)中的應用
實際應用中,多芯MT-FA光組件的并行傳輸能力與高可靠性特征,使其成為數(shù)據(jù)中心、AI算力集群等場景板間互聯(lián)選擇的方案。在800G/1.6T光模塊大規(guī)模部署的背景下,單個MT-FA組件可同時承載12通道光信號,通過短纖跳線形式實現(xiàn)板卡間光路直連,有效替代傳統(tǒng)電信號傳輸方案。其緊湊型結構(體積較常規(guī)連接器縮小60%)與耐環(huán)境特性(工作溫度范圍-25℃至+70℃),可滿足服務器機柜內(nèi)高密度布線需求,單模塊空間占用降低40%的同時,將布線復雜度從O(n2)級降至O(n)級。在AI訓練集群的板間互聯(lián)場景中,該組件通過支持Infiniband、以太網(wǎng)等多種協(xié)議,實現(xiàn)GPU加速卡與交換機間的低時延(<10ns)光連接,配合定制化端面角度(8°至42.5°可調(diào))與通道數(shù)量(8-24芯可選)服務,可適配不同廠商的光模塊設計需求,為超大規(guī)模算力網(wǎng)絡提供穩(wěn)定的光傳輸基礎。浙江多芯MT-FA光組件對準精度智能交通通信系統(tǒng)中,多芯 MT-FA 光組件助力車路協(xié)同數(shù)據(jù)高效傳輸。
從技術實現(xiàn)層面看,多芯MT-FA與DAC的協(xié)同需攻克兩大重要挑戰(zhàn):一是光-電-光轉換的時延一致性,二是多通道信號的同步校準。MT-FA的V槽pitch公差控制在±0.5μm以內(nèi),確保每芯光纖的物理位置精度,配合高精度端面研磨工藝,可使12芯通道的插入損耗差異小于0.1dB,回波損耗穩(wěn)定在60dB以上,為DAC系統(tǒng)提供了均勻的傳輸通道。在實際應用中,DAC的數(shù)字信號首先通過驅(qū)動芯片轉換為多路電調(diào)制信號,再經(jīng)VCSEL陣列轉換為光信號,通過MT-FA的并行光纖傳輸至接收端。接收端的PD陣列將光信號還原為電信號后,由DAC的模擬輸出級驅(qū)動揚聲器或顯示器。這一過程中,MT-FA的42.5°端面設計通過全反射原理將光路轉向90°,使光模塊的厚度從傳統(tǒng)方案的12mm壓縮至6mm,適配了DAC系統(tǒng)對設備緊湊性的要求。同時,MT-FA支持PC/APC雙研磨工藝,可靈活適配不同DAC系統(tǒng)的接口標準,進一步提升了技術方案的通用性。
多芯MT-FA光組件作為AOC(有源光纜)的重要技術載體,通過精密的光纖陣列排布與高精度制造工藝,實現(xiàn)了光信號在電-光-電轉換過程中的高效傳輸。其重要技術優(yōu)勢體現(xiàn)在多通道并行傳輸能力上,例如采用12芯或24芯MT插芯設計的組件,可在單根光纜中集成多路單獨光通道,配合42.5°端面全反射研磨工藝,將光信號損耗控制在≤0.35dB的極低水平。這種設計使得AOC在400G/800G甚至1.6T高速傳輸場景中,能夠同時處理多路并行數(shù)據(jù)流,明顯提升單纜傳輸容量。以數(shù)據(jù)中心內(nèi)部連接為例,MT-FA組件通過MTP/MPO標準接口與光模塊直接耦合,消除了傳統(tǒng)分立式光纖連接中的對準誤差,使光耦合效率提升至99%以上,同時將系統(tǒng)布線密度提高3倍以上,有效解決了高密度機柜中的空間約束問題。多芯 MT-FA 光組件助力構建高效光互聯(lián)架構,推動通信技術持續(xù)發(fā)展。
多芯MT-FA光組件在長距傳輸領域的應用,重要在于其通過精密的光纖陣列設計與端面全反射技術,實現(xiàn)了多通道光信號的高效并行傳輸。傳統(tǒng)長距傳輸場景中,DFB、FP激光器因材料與工藝限制難以直接集成陣列,而MT-FA組件通過42.5°或45°端面研磨工藝,將光纖端面轉化為全反射鏡面,使入射光以90°轉向后精確耦合至光器件表面,反向傳輸時亦遵循相同路徑。這種設計尤其適配VCSEL陣列與PD陣列的耦合需求,例如在100G至1.6T光模塊中,MT-FA組件可同時支持4至128通道的光信號傳輸,通道間距精度控制在±0.5μm以內(nèi),確保多路光信號在并行傳輸過程中保持低插損(≤0.5dB)與高回波損耗(≥50dB)。其全石英材質(zhì)與耐寬溫特性(-25℃至+70℃)進一步保障了長距傳輸中的穩(wěn)定性,即使面對跨城際或海底光纜等復雜環(huán)境,仍能維持信號完整性。此外,MT-FA組件的緊湊結構(V槽尺寸可定制至2.0×0.5×0.5mm)與高密度排布能力,使其在光模塊內(nèi)部空間受限的場景下,仍能實現(xiàn)每平方毫米數(shù)十芯的光纖集成,明顯降低了系統(tǒng)布線復雜度與維護成本。針對智能電網(wǎng)監(jiān)控,多芯MT-FA光組件支持OPGW光纜的高密度接入。貴州多芯MT-FA光組件在數(shù)據(jù)中心互聯(lián)中的應用
多芯 MT-FA 光組件推動光通信向更高密度、更快速度方向不斷演進。貴州多芯MT-FA光組件在數(shù)據(jù)中心互聯(lián)中的應用
在物理結構與可靠性方面,多芯MT-FA組件展現(xiàn)出高度集成化的設計優(yōu)勢。MT插芯尺寸可定制至1.5×0.5×0.17mm至15×22×2mm范圍,配合V槽結構實現(xiàn)光纖間距的亞微米級控制(精度誤差dX/dY≤0.75μm),確保多通道光信號的精確對齊。組件采用特殊球面研磨工藝處理光纖端面,提升與激光器、探測器的耦合效率,同時通過強酸浸泡、等離子處理等表面改性技術增強材料粘接力,使其能夠通過-55℃至120℃溫度沖擊驗證及高壓水煮測試等嚴苛環(huán)境試驗。在通道擴展性上,該組件支持從4通道到128通道的靈活配置,通道均勻性誤差控制在±0.3°以內(nèi),滿足CPO/LPO共封裝光學、硅光集成等前沿技術的需求。此外,組件的機械耐久性經(jīng)過200次插拔測試驗證,較小拉力承受值達10N,確保在數(shù)據(jù)中心高密度布線場景下的長期穩(wěn)定性。這些技術參數(shù)的協(xié)同優(yōu)化,使多芯MT-FA組件成為支撐AI算力集群、5G前傳網(wǎng)絡及超算中心等關鍵基礎設施的重要光互連解決方案。貴州多芯MT-FA光組件在數(shù)據(jù)中心互聯(lián)中的應用