多芯MT-FA光組件在長距傳輸領域的應用,重要在于其通過精密的光纖陣列設計與端面全反射技術,實現了多通道光信號的高效并行傳輸。傳統長距傳輸場景中,DFB、FP激光器因材料與工藝限制難以直接集成陣列,而MT-FA組件通過42.5°或45°端面研磨工藝,將光纖端面轉化為全反射鏡面,使入射光以90°轉向后精確耦合至光器件表面,反向傳輸時亦遵循相同路徑。這種設計尤其適配VCSEL陣列與PD陣列的耦合需求,例如在100G至1.6T光模塊中,MT-FA組件可同時支持4至128通道的光信號傳輸,通道間距精度控制在±0.5μm以內,確保多路光信號在并行傳輸過程中保持低插損(≤0.5dB)與高回波損耗(≥50dB)。其全石英材質與耐寬溫特性(-25℃至+70℃)進一步保障了長距傳輸中的穩定性,即使面對跨城際或海底光纜等復雜環境,仍能維持信號完整性。此外,MT-FA組件的緊湊結構(V槽尺寸可定制至2.0×0.5×0.5mm)與高密度排布能力,使其在光模塊內部空間受限的場景下,仍能實現每平方毫米數十芯的光纖集成,明顯降低了系統布線復雜度與維護成本。航空航天通信領域,多芯 MT-FA 光組件適應極端條件,保障通信安全。上海多芯MT-FA光組件在機柜互聯中的應用
多芯MT-FA光組件憑借其高密度集成特性,在數據中心機柜互聯場景中展現出明顯優勢。該組件通過多芯并行傳輸技術,將傳統單芯光纖的傳輸容量提升至數倍,有效解決了機柜間高帶寬需求下的空間約束問題。其重要結構采用MT(機械轉移)對接方式,配合精密的FA(光纖陣列)技術,實現了多芯光纖的精確對準與低損耗連接。在機柜級應用中,這種設計大幅減少了光纖連接器的物理占用空間,使單U機柜內可部署的光纖鏈路數量提升3-5倍,同時降低了布線復雜度。例如,在400G/800G以太網部署中,多芯MT-FA組件可通過單接口實現12芯或24芯并行傳輸,將機柜間互聯密度提升至傳統方案的4倍以上。此外,其模塊化設計支持熱插拔操作,配合預端接光纖跳線,可縮短機柜部署周期達60%,明顯提升數據中心擴容效率。該組件還具備優異的機械穩定性,通過強化型MT插芯與金屬外殼結構,可承受超過500次插拔循環而不影響性能,滿足數據中心長期運維需求。上海多芯MT-FA光組件在機柜互聯中的應用多芯MT-FA光組件的封裝技術革新,使單模塊成本降低32%。
多芯MT-FA光組件作為高速光通信系統的重要器件,其技術參數直接決定了光模塊的傳輸性能與可靠性。該組件通過精密研磨工藝將多根光纖集成于MT插芯中,形成高密度并行傳輸結構,支持從4通道至128通道的靈活配置。工作波長覆蓋850nm至1650nm全光譜范圍,兼容單模(SM)與多模(MM)光纖類型,其中1310nm與1550nm波段普遍應用于長距離傳輸場景,850nm波段則多用于短距數據中心互聯。關鍵參數中,插入損耗(IL)被嚴格控制在≤0.35dB范圍內,通過優化V槽間距與光纖端面研磨精度實現,確保多通道信號傳輸的一致性;回波損耗(RL)則達到≥60dB(單模APC)與≥20dB(多模PC)標準,有效抑制光反射對激光器的干擾。組件支持的裸纖角度包括0°、8°、42.5°及45°全反射設計,其中42.5°斜端面通過全反射原理實現RX端與PD陣列的直接耦合,明顯提升光電轉換效率,尤其適用于400G/800G/1.6T等超高速光模塊的內部連接。
多芯MT-FA光組件的定制化能力進一步拓展了其在城域網復雜場景中的應用深度。針對城域網中不同業務對傳輸距離、時延和可靠性的差異化需求,MT-FA可通過調整端面角度、通道數量及光纖類型實現靈活適配。例如,在城域網邊緣層的短距互聯場景中,采用多模光纖的MT-FA組件可支持850nm波長下850m傳輸,插入損耗≤0.5dB,滿足數據中心互聯(DCI)與園區網的高帶寬需求;而在城域網匯聚層的長距傳輸場景中,保偏型MT-FA通過維持光波偏振態穩定,配合相干光通信技術實現1310nm/1550nm波長下數十公里的無中繼傳輸,回波損耗≥60dB的特性有效抑制非線性效應,保障信號完整性。此外,MT-FA組件與硅光芯片、CPO(共封裝光學)技術的深度集成,推動城域網光模塊向小型化、低功耗方向演進。通過將激光器、調制器與MT-FA陣列集成于單一封裝,光模塊體積縮減60%,功耗降低40%,明顯提升城域網設備的部署密度與能效比,為未來1.6T甚至3.2T超高速傳輸奠定物理基礎。在光模塊老化測試中,多芯MT-FA光組件的MTBF超過50萬小時。
對準精度的持續提升正驅動著光組件向定制化與集成化方向深化。為適應不同應用場景的需求,MT-FA的對準角度已從傳統的0°擴展至8°、42.5°乃至45°,這種多角度設計不僅優化了光路耦合效率,更通過全反射原理降低了端面反射帶來的噪聲。例如,42.5°研磨的FA端面可將接收端的光信號以接近垂直的角度導入PD陣列,明顯提升光電轉換效率;而8°傾斜端面則能有效抑制背向反射,在相干光通信中維持信號的偏振態穩定。與此同時,對準精度的提升也催生了新型封裝技術的誕生,如采用硅基微透鏡陣列與MT-FA一體化集成的方案,通過將透鏡曲率半徑精度控制在±1μm以內,進一步縮短了光路傳輸距離,降低了耦合損耗。未來,隨著1.6T光模塊對通道數(如128芯)和密度(芯間距≤127μm)的更高要求,MT-FA的對準精度將面臨納米級挑戰,這需要材料科學、精密加工與光學設計的深度融合,以實現光通信系統性能的跨越式升級。多芯MT-FA光組件的耐輻射特性,適用于航天器載光通信系統。青海多芯MT-FA光組件在廣域網中的應用
多芯 MT-FA 光組件助力開發新型光通信設備,推動行業技術創新。上海多芯MT-FA光組件在機柜互聯中的應用
從技術實現層面看,多芯MT-FA與DAC的協同需攻克兩大重要挑戰:一是光-電-光轉換的時延一致性,二是多通道信號的同步校準。MT-FA的V槽pitch公差控制在±0.5μm以內,確保每芯光纖的物理位置精度,配合高精度端面研磨工藝,可使12芯通道的插入損耗差異小于0.1dB,回波損耗穩定在60dB以上,為DAC系統提供了均勻的傳輸通道。在實際應用中,DAC的數字信號首先通過驅動芯片轉換為多路電調制信號,再經VCSEL陣列轉換為光信號,通過MT-FA的并行光纖傳輸至接收端。接收端的PD陣列將光信號還原為電信號后,由DAC的模擬輸出級驅動揚聲器或顯示器。這一過程中,MT-FA的42.5°端面設計通過全反射原理將光路轉向90°,使光模塊的厚度從傳統方案的12mm壓縮至6mm,適配了DAC系統對設備緊湊性的要求。同時,MT-FA支持PC/APC雙研磨工藝,可靈活適配不同DAC系統的接口標準,進一步提升了技術方案的通用性。上海多芯MT-FA光組件在機柜互聯中的應用