智能光譜診斷系統:搭載可定制波長光源(532nm/1064nm/OPO可調諧),具備"分子指紋"識別能力。通過多波長激發與特征光譜解析:·1720nm鎖定脂質核心(Sci.Adv.2023)·532/1064nm量化血氧飽和度·NIR-II區活躍探針信號(NanoLett.2021)實現從組織結構到代謝功能的精細量化,為腫瘤異質性、動脈斑塊易損性等提供診斷級數據。腦血管研究平臺:以3μm分辨率無標記呈現全腦微血管網,成為神經科學研究工具:·動態捕捉"缺血-再灌注"全程(J.Biophotonics2020)·量化酒精對腦血流影響(J.Biophotonics2023)·活體可視化腦膜淋巴管(LightSciAppl2024)配套分析軟件自動生成血管密度、分支角度等16項參數,推動腦血管研究進入定量時代。肝膽代謝定量模型??,ICG清除率動態評估肝小葉功能異常。內窺全層掃描高分辨光聲多模態小動物活體成像系統實驗儀器
廣州光影細胞科技有限公司的高分辨光聲多模態小動物活體成像系統,可應用于皮瓣設計與存活評估:穿支血管清晰可辨在整形外科和顯微外科研究中,系統能評估皮瓣的血供程度。Zhang等(QuantImagingMedSurg2021)應用該系統,實現了小鼠全腿及背部皮瓣血管的高分辨率無標記成像。它能清晰顯示穿支血管的數量、位置、邊界和直徑,輔助優化皮瓣設計;預測皮瓣潛在壞死區,便于及時干預;還能觀察多領地皮瓣中“窒息”血管的形態變化,顯著提高皮瓣存活率研究的精確度。醫用高分辨光聲多模態小動物活體成像系統檢測精度??類風濕關節炎診斷??,新生血管密度+滑膜厚度量化。
貝爾效應百年突破:將1880年發現的光聲效應升級為活體成像利器:激光-超聲轉換效率>80%,10kHz超高速采集(較初代快1000倍),自適應聲學透鏡消除波形畸變。實現納米探針0.1μm級位移追蹤與代謝過程毫秒級解析,推動基礎研究向臨床轉化。在腦科學研究中,成功捕獲腦脊液流動動態(幀率100fps),為神經退行性疾病研究開辟新路徑。組織滲透性定量評估:全球活體滲透性動態模型:靜脈注射FDA認證造影劑ICG后,通過1064nm實時監測生成組織富集曲線,計算Ktrans傳輸常數(精度±0.02 min?1)與Ve細胞外間隙體積。廣東省人民醫院研究(Photonics Res. 2023)證實,Ktrans>0.15 min?1預測皮瓣壞死風險準確率達91%。該技術為燒傷、糖尿病足等組織修復研究提供量化金標準。
廣州光影細胞科技有限公司的高分辨光聲多模態小動物活體成像系統,可應用于腫瘤微環境監測:血管動力學與生命體征追蹤:系統具備大范圍監測和實時局部記錄不同臟器微血管網絡的能力(Yang, J. Biophotonics 2020)。在腫瘤研究中,這使得研究人員能夠深入探究腫瘤微環境(TME),包括血管動力學(血流速度、灌注)、血管通透性等關鍵指標的變化。同時,系統還能在成像過程中追蹤小動物的基本生命體征,為多方面評估腫塊狀態和醫治反應提供多維信息。??易損斑塊識別??,nm波長精確鎖定脂質核心。
廣州光影細胞科技有限公司的高分辨光聲多模態小動物活體成像系統產品,突破性優勢:深度與分辨率兼得傳統活體成像面臨嚴峻挑戰:光學成像受組織散射限制,穿透深度約100μm;超聲成像雖有厘米級穿透力,但波長限制導致空間分辨率不足。光影細胞的光聲成像技術創造性結合了光學對比度與超聲分辨力,成為破局關鍵。光聲信號源于組織內部光吸收體的熱彈性膨脹,其分辨率由超聲探測器決定,可達3μm橫向分辨率,而穿透深度則受益于生物組織對超聲的低衰減特性,可達6mm,真正實現“既看得深,又看得清”,為生物醫學研究提供更優解決方案。??國產OPO激光器??,波長覆蓋-nm全光譜。腦科學研究高分辨光聲多模態小動物活體成像系統價格
??代謝綜合征評估??,糖尿病模型多器官聯動異常預警。內窺全層掃描高分辨光聲多模態小動物活體成像系統實驗儀器
廣州光影細胞科技有限公司的高分辨光聲多模態小動物活體成像系統,系統比較大的特點之一是支持無損無標記活體成像。無需注射造影劑,即可直接對內源性光吸收物質(如氧合/脫氧血紅蛋白HbO2/HbR、黑色素Melanin)進行高靈敏度成像。這不僅保持了樣本的自然生理狀態,避免了造影劑引入的潛在干擾和毒性,更支持對同一動物個體進行長期、動態、重復觀察,獲取連續可靠的生理病理變化數據,尤其適用于發育、疾病進程、醫治響應等長期研究。內窺全層掃描高分辨光聲多模態小動物活體成像系統實驗儀器