明青AI:驅動企業效能提升的智能化引擎。 人工智能技術正成為企業降本增效的關鍵工具。明青AI基于自主研發的算法體系與工程化能力,為企業提供可落地的智能化解決方案,助力實現生產、管理與決策的不斷優化。 在效率提升方面,AI可替代人工完成高重復性任務。通過視覺檢測、語音解析等技術,實現產線分揀、文檔審核等流程自動化,單環節處理速度提升3-5倍。質量管控環節,AI通過多維度數據分析識別產品缺陷與工藝偏差,缺陷漏檢率較人工檢測降低80%以上。系統支持實時告警與根因追溯,幫助企業快速定...
明青AI視覺:讓企業運營“快而不亂”。 企業的運營效率,藏在產線的每一次等待里——質檢員核對完100件產品,產線已堆積200件待檢品;倉庫分揀員核對面單時手忙腳亂,訂單延遲率悄悄爬升;設備巡檢靠經驗“摸線索”,小故障拖成大停機……這些看似“不常見”的卡頓,正悄悄啃噬著企業的運營節奏。 明青AI視覺方案,就是用“智能的眼睛”打通運營堵點。在質檢環節,它替代人工目檢完成毫米級缺陷識別,讓產品流轉從“等檢”變為“即檢”;在倉儲分揀場景,系統自動讀取面單信息并引導機械臂準...
明青AI視覺方案:以深度定制賦能行業智能化。 明青AI視覺方案依托模塊化架構與自研算法引擎,為企業提供高度定制化的視覺檢測解決方案,更好的適配復雜多變的工業場景需求。 針對不同行業特性,方案支持從硬件選型到算法邏輯的全鏈路定制。在電子制造領域,通過定制檢測模型,可實現電子元器件的多角度檢測,從而降低產線復檢率;在汽車零部件行業,通過定制方案,實現零部件缺陷的準確捕捉,讓誤判率大幅下降;倉儲場景中,可根據自動識別條碼、缺陷,更好的優化分揀策略,從而提升分揀效率和處理量。方案兼容主流的工業協議與MES/...
明青智能AI視覺方案:安全為本,數據自主掌控。 在數據隱私日益重要的當下,明青智能深刻理解客戶對AI視覺應用中自有關鍵數據資產安全的關切。 我們的解決方案的亮點在于,內置的客戶自標注功能,直擊數據安全痛點。 該功能允許客戶在自有安全環境中,使用明青提供的易用工具完成圖像、視頻數據的標注工作,并利用明青智能提供的,部署在本地的訓練平臺訓練出模型。原始數據全程保留在客戶本地,無需上傳至第三方平臺。這種“數據不出域”的架構設計,有效保障了客戶敏感數據(如人臉、車牌、生產現場細節等)的機密性與所...
明青AI視覺:為企業裝上智能化的“眼睛”。 在工業生產與質量管控中,人工檢測效率低、標準不統一等問題長期存在。明青AI視覺解決方案通過智能化圖像分析技術,幫助企業實現準確、高效的自動化檢測,切實提升運營質量。 看得更快,成本更低:系統可7×24小時穩定運行,單臺設備檢測速度比人工快5-10倍,可以大幅減少重復性人力投入。 看得更準,質量更穩:劃痕、尺寸偏差、裝配錯漏等細微缺陷,識別準確率超99%,較人工目檢漏檢率大幅度降低,從而降低客戶投訴率下降,提升產品合格率提...
明青AI視覺:用實在技術,解企業實際問題。 在企業生產、管理的日常里,總有一些“卡殼”的細節——產線質檢靠人眼漏檢率高,倉儲分揀靠人工效率上不去,安全巡檢靠經驗覆蓋不全……這些真實的需求,是明青AI視覺的起點。我們不做“為技術而技術”的研發,而是扎根工廠車間、倉庫貨架、園區角落,用AI視覺去“讀懂”企業的具體問題:一條產線的瑕疵特征是什么?不同貨品的抓取難點在哪里?重點區域的異常信號該如何捕捉?從算法調優到硬件適配,從試點測試到規模化落地,每一步都緊扣企業實際場景。工業質檢中,我們幫客戶把漏檢率穩穩降下來;倉儲分揀時...
明青智能:AI視覺驅動生產效率提升。 在工業智能化升級浪潮中,明青智能聚焦生產場景痛點,以AI視覺技術為基礎構建高效能解決方案,助力企業提升效率。方案通過高精度視覺檢測系統實現產線全流程數字化監控:毫秒級實時捕捉產品缺陷、智能識別物料規格、動態追蹤生產動線,替代傳統人工抽檢的低效與誤差,大幅度質檢效率。基于深度學習的生產數據智能分析模塊,可自動識別設備異常狀態、優化工序銜接節奏,幫助企業提升產線綜合利用率。與人工檢測相比,AI視覺方案可以大幅降低產線缺陷漏檢率,縮短質檢耗時,提升組裝效率,降低人工干預頻次等等。 明青智能以技...
明青AI視覺檢測系統:解決鞋業質檢隨機性難題 在鞋類制造中,缺陷檢測面臨多重隨機性挑戰:材質反光差異、紋理干擾、不規則瑕疵(如劃痕、開膠、污漬)等傳統算法難以穩定識別的問題。 明青AI自主研發的多尺度動態學習架構,針對性突破復雜場景下的視覺檢測瓶頸。 技術競爭力解析 1.多模態特征融合系統集成可見光、結構光等多源數據,通過動態權重分配算法,準確區分反光、褶皺等干擾信號與真實缺陷,避免過檢/漏檢。 2.小樣本...
明青AI視覺:開啟企業智慧化新篇。 在數字化浪潮中,企業智慧化轉型迫在眉睫,明青AI視覺系統正是得力助手。 它基于前沿自研算法,可以適配復雜多變的工業場景。于工業質檢而言,能24小時自動化作業,快速識別零件尺寸偏差、表面瑕疵等,識別效率比人工高3倍不止,大幅減少漏檢,提升產品品質。倉儲管理方面,多貨位動態定位技術讓貨物掃碼與異常識別更高效,單倉日均處理效率提升40%,加速貨物周轉。 并且,該系統可與企業現有ERP、MES等系統無縫對接,實時反饋數據,優化生產運營流程。 明青AI視覺,助力企業突...
明青智能:AI視覺驅動生產效率提升。 在工業智能化升級浪潮中,明青智能聚焦生產場景痛點,以AI視覺技術為基礎構建高效能解決方案,助力企業提升效率。方案通過高精度視覺檢測系統實現產線全流程數字化監控:毫秒級實時捕捉產品缺陷、智能識別物料規格、動態追蹤生產動線,替代傳統人工抽檢的低效與誤差,大幅度質檢效率。基于深度學習的生產數據智能分析模塊,可自動識別設備異常狀態、優化工序銜接節奏,幫助企業提升產線綜合利用率。與人工檢測相比,AI視覺方案可以大幅降低產線缺陷漏檢率,縮短質檢耗時,提升組裝效率,降低人工干預頻次等等。 明青智能以技...
明青AI視覺系統:以智能技術解決生產管理難題。 在制造業、物流、醫療、能源等多元化場景中,明青AI視覺系統憑借深度學習技術與靈活架構,持續為企業提供高效、可靠的智能解決方案。面對生產線質檢效率低、倉儲分揀依賴人力、設備監控存在盲區等共性痛點,系統通過自適應算法與模塊化設計,實現跨場景快速適配。 在汽車零部件制造領域,系統以毫秒級精度識別裝配缺陷,降低返工率;于食品包裝產線,自動檢測包裝完整性,規避合規風險;針對設備運維,實時監測運行狀態,提前預警潛在故障。此外,系統在制造、質檢分析等場景...
明青智能端-邊-云架構:準確與能效的工程實踐 在智慧工廠、智慧交通等高實時性場景中,單一計算層難以兼顧識別精度與能耗效率。明青智能采用端-邊-云分層決策架構,構建場景適配的計算鏈路:端側設備執行輕量化預處理(<50ms延時),邊緣節點完成80%高頻次檢測任務,云端集中處理長周期數據分析與模型迭代。 比如高速公路缺陷(拋灑物、裂縫等)檢測,因為巡檢車速度很快,且有些缺陷必須立刻上報,以盡可能避免交通事故的發生,就需要利用邊緣計算設備實時識別出比較大的坑槽、拋灑物等情況,但裂縫厚度、長度等測量,則放到云端系統計算,實現識...
明青智能端-邊-云架構:準確與能效的工程實踐 在智慧工廠、智慧交通等高實時性場景中,單一計算層難以兼顧識別精度與能耗效率。明青智能采用端-邊-云分層決策架構,構建場景適配的計算鏈路:端側設備執行輕量化預處理(<50ms延時),邊緣節點完成80%高頻次檢測任務,云端集中處理長周期數據分析與模型迭代。 比如高速公路缺陷(拋灑物、裂縫等)檢測,因為巡檢車速度很快,且有些缺陷必須立刻上報,以盡可能避免交通事故的發生,就需要利用邊緣計算設備實時識別出比較大的坑槽、拋灑物等情況,但裂縫厚度、長度等測量,則放到云端系統計算,實現識...
明青AI視覺:“小”模型驅動“大”效能。 在工業質檢場景中,大模型常面臨部署成本高、響應延遲的痛點。明青AI專注開發輕量化視覺模型,以“小、快、準”特性實現毫秒級實時在線檢測,賦能企業高效落地智能化。 關鍵優勢 1.低資源高響應模型體積<50MB,適配主流工控機及邊緣設備,無需高性能GPU支撐,單幀識別耗時≤50ms; 2.實時動態處理支持產線連續流檢測,每秒處理100+圖像,識別準確率超99.5%,較云端方案延遲降低90%; 3.場景靈活...
明青AI視覺:用智能技術,讓企業效率“看得見”提升。 在生產制造、倉儲物流等場景中,“效率”是企業生存的關鍵。但人工目檢耗時易錯、分揀核對重復低效、產線巡檢依賴經驗等問題,經常讓效率提升的目標遇到困難,甚至無法達成。明青AI視覺的切入點很簡單:用技術替人做“重復、繁瑣、易出錯”的事,把效率提上去。比如在汽車零部件質檢線,用工業相機+算法實時分析,替代以往工人需逐件檢查,耗時大幅度降低,且員工從“盯眼”轉為“看屏”,只需處理系統標記的異常件。這些改變不依賴“顛覆式技術”,而是聚焦企業真實流程:從產線痛點出發,用AI視覺替代機...