數據采集:實時采集風速、負載需求、儲能系統狀態等數據。狀態評估:根據采集的數據,評估系統的當前狀態和未來趨勢。策略制定:根據狀態評估結果,制定協同控制策略。執行控制:將控制策略下發給風力發電系統和儲能系統,執行相應的控制動作。反饋調整:根據系統響應和實時數據,對控制策略進行反饋調整,以優化系統性能。五、協同控制優勢提高穩定性:通過協同控制,減少因風速波動引起的功率波動,提高系統的穩定性。優化能源利用:根據電網需求和儲能系統的狀態,優化風力發電和儲能系統的調度策略,提高能源利用效率。延長設備壽命:通過合理的充放電控制,減少儲能系統的頻繁充放電次數,延長設備壽命。快速頻率響應系統的推廣應用,有助于...
雙饋風機單獨響應頻率變化難以達到理想效果,因此常將儲能裝置接在風電場的公共節點處,形成風-儲系統。儲能系統可輔助雙饋風機參與快速頻率響應,提高系統的頻率調節能力。控制策略優化快速頻率響應過程中,雙饋風機的有功出力與電網頻率的關系需進一步研究和確定。針對快速頻率響應階段結束的雙饋風機,需設計合理的轉子轉速恢復策略,避免電網頻率的二次跌落。系統硬件與通信快速頻率響應系統通常包括**服務器、測頻裝置、網絡交換機等硬件設備。**服務器采用高性能處理器,支持多規約通訊(如MODBUS/IEC104),具備多個以太網口和RS485接口。系統需滿足高電磁兼容性和電氣絕緣性能要求,斷電后數據保持時間不小于...
快速頻率響應系統(FFR)通過實時監測電網頻率偏差,主動調節新能源場站有功出力,抑制頻率波動,維持電網穩定。系統基于頻率下垂特性,當頻率下降時增加有功輸出,頻率上升時減少有功輸出,模擬同步發電機的功頻靜特性。**原理是利用高精度測頻裝置(精度可達0.001Hz)和快速控制算法(響應周期≤200ms),實現毫秒級調節。與二次調頻(AGC)不同,FFR不依賴外部指令,*通過本地頻率監測自主響應,屬于有差調節。慣量響應是FFR的一種形式,以頻率導數為控制信號,模擬同步發電機轉子慣量,延緩頻率變化速率。系統通過優化調頻策略,減少新能源場站對電網的頻率波動影響,提升電網運行效率。貴州快速頻率響應系統特征...
部分快頻裝置集成防逆流智能控制、反孤島保護等功能。浙江涵普電力PD6100系統支持與AGC協調控制及模擬測試,南京中匯電氣RE-778新能源快速頻率響應裝置完成網絡安全認證。光伏電站參與電力系統頻率調節主要有光伏電站有功備用方式和增加儲能單元方式,二者又均可以逆變器單元或電站為對象通過虛擬同步發電機控制、下垂控制實現。有功備用主要通過將逆變器運行功率偏離最大功率點,以提前預留一定量的光伏功率調節能力實現,該方式將一定程度上降低光伏系統發電性能。快速頻率響應系統(FFR)通過實時監測電網頻率,毫秒級響應頻率波動,快速調節發電或負荷資源。貴州企業快速頻率響應系統協同控制策略實施功率跟蹤控制:風力發...
調頻下垂曲線與控制策略調頻下垂曲線通過設定頻率與有功功率的折線函數實現,支持變槳、慣量、變槳+慣量聯動控制策略。系統可根據電網頻率偏差快速調節機組有功輸出,抑制頻率波動。系統響應時間與精度快速頻率響應系統需滿足高精度測頻(≤±0.05Hz)和快速閉環響應(周期≤200ms)要求。系統對上級調度指令的分配所需時間短,調節時間快,控制偏差小。系統安全與可靠性系統具備斷電保護功能,斷電后統計數據保持時間不小于72小時。同時,系統需滿足高電磁兼容性和電氣絕緣性能要求,確保在惡劣環境下穩定運行。支持一次調頻(慣性響應)與二次調頻(AGC)協同,覆蓋從毫秒級到分鐘級的頻率調節需求。企業快速頻率響應系統介紹...
快速頻率響應系統通過接入并網點(變高)側三相CT、PT,高頻采集并網點頻率及電氣量,經過計算得到高精度的并網頻率值。當電網頻率偏離額定值時,系統會根據預設的調頻下垂曲線,快速調節機組的有功輸出。具體來說,當電網頻率下降時,系統根據調頻下垂曲線快速調節機組增加有功輸出;當電網頻率上升時,系統根據調頻下垂曲線快速調節機組減小有功輸出。有功—頻率下垂特性通過設定頻率與有功功率折線函數實現。快速頻率響應系統的**控制策略包括有功—頻率特性曲線計算、響應死區設定等。以江蘇電網新能源場站一次調頻技術規范為例,裝置頻率死區需≤±0.05Hz,調差率范圍為2%—6%。在實際運行中,系統會根據預設的參數,實時判...
快速頻率響應系統也稱為一次調頻系統,是保障電網頻率穩定的關鍵設備,通過實時監測電網頻率偏差并快速調節新能源場站有功出力,實現電網頻率恢復。當電網的頻率偏離額定值時,快速頻率響應系統主動控制機組有功功率的增減,限制電網頻率變化,使電網頻率維持穩定。當電網頻率下降時,系統根據電網調頻下垂曲線快速調節機組增加有功輸出;當電網頻率上升時,系統根據電網調頻下垂曲線快速調節機組減小有功輸出。新能源快速頻率響應系統需要接入并網點(變高)側三相CT、PT,經過系統高頻采集、計算后,得到高精度的并網頻率值,進行是否調頻動作的判斷。滿足動作條件時,系統會根據電網規定的調頻下垂曲線計算全場調節的有功總增量,快速頻率...
例如,在偏遠地區供電場景中,系統可整合風光儲聯合發電系統,根據電價波動和負荷需求,自動切換運行模式,確保7×24小時穩定供電。儲能系統可與快速頻率響應系統配合,提供短時慣量響應和頻率支撐,提升電網的頻率穩定性。工業園區與商業綜合體在工業園區或商業綜合體中,系統可協調和管理園區內的分布式電源和儲能系統,降低用電成本,提高能源利用效率。例如,通過快速頻率響應系統,園區可在用電高峰時段減少對主網的依賴,優先使用分布式電源和儲能系統的電能。價值創造與經濟效益減少考核費用:通過快速頻率響應系統,新能源場站可避免因頻率波動導致的考核罰款。例如,新疆達坂城地區某50MW風電場通過應用快速頻率響應系統,為業主...
快速頻率響應系統(FFR)通過實時監測電網頻率偏差,主動調節新能源場站有功出力,抑制頻率波動,維持電網穩定。系統基于頻率下垂特性,當頻率下降時增加有功輸出,頻率上升時減少有功輸出,模擬同步發電機的功頻靜特性。**原理是利用高精度測頻裝置(精度可達0.001Hz)和快速控制算法(響應周期≤200ms),實現毫秒級調節。與二次調頻(AGC)不同,FFR不依賴外部指令,*通過本地頻率監測自主響應,屬于有差調節。慣量響應是FFR的一種形式,以頻率導數為控制信號,模擬同步發電機轉子慣量,延緩頻率變化速率。新能源場站通過接入并網點側的CT、PT,經高頻采集計算后得到高精度并網頻率值,判斷是否調頻。陜西如何...
快速頻率響應系統測量及計算精度方面,電壓測量精度為0.2s級(當輸入電壓模擬量的值在20%—120%額定值時),電流測量精度為0.2s級(當輸入電流模擬量的值在20%—120%額定值時),無功功率準確度為0.5級(當電壓、電流的夾角在0°—+60°及0°—-30°范圍內變化時),功率因數準確度為0.002。快速頻率響應系統對信號源的要求方面,波形為正弦波,總畸變率要小于5%,頻率為50Hz,偏差為10%。快速頻率響應系統其它參數方面,通訊協議支持MODBUS/IEC104,有8個以太網口,4個RS485接口,整系統功率損耗<100W,CT原邊功耗<0.4VA,PT輸入阻抗>500kΩ。快速頻率...
風-儲系統協同控制的工作原理基于風力發電與儲能系統的特性互補,通過智能控制算法實現兩者之間的協調配合,以維持系統的功率平衡和穩定運行。以下是詳細的工作原理描述:一、系統構成與特性風力發電系統:風力發電系統的發電功率受到風速大小的限制,而風能固有的間歇性和波動性使單一的風能發電具有很大的波動性。儲能系統:儲能系統(如電池儲能)具有快速充放電能力,可以平滑風力發電的波動,并在需要時提供額外的功率支持。二、協同控制目標功率平衡:通過協同控制,確保風力發電與儲能系統的總輸出功率滿足負載需求,維持系統的功率平衡。穩定運行:減少因風速波動引起的功率波動,提高系統的穩定性和可靠性。優化調度新能源場站通過接入...
新能源場站在風電場和光伏電站中,快速頻率響應系統可協調多個逆變器或風機的運行,實現有功功率的精細控制。例如,新疆達坂城地區某50MW風電場通過應用量云的快速頻率響應系統,不僅為業主節省了24萬元/年的考核費用,還通過壓線控制功能,使風電場平均每月增發電量達到9萬千瓦時,按上網電價0.34元計算,年增發電量給業主帶來至少36萬元收益,直接收益總計高達60萬元/年。微電網與儲能系統在微電網中,快速頻率響應系統作為**控制設備,可實現微電網內分布式電源、儲能系統和負荷的協同運行和能量管理。例如,在偏遠地區供電場景中,系統可整合風光儲聯合發電系統,根據電價波動和負荷需求,自動切換運行模式,確保7×24...
快速頻率響應系統具備高精度的頻率測量能力,頻率測量精度可達±0.002Hz,采樣周期≤50ms。同時,系統的閉環響應周期≤200ms,能夠在極短的時間內對電網頻率變化做出響應。例如,量云快速頻率響應系統解決方案中,產品性能參數并網點數據刷新周期≤10ms,測頻精度0.001Hz,控制周期≤200ms,響應滯后時間thx≤1s,響應時間t0.9≤5s,調節時間ts≤7s,控制偏差≤1%,遠優于西北電網風電調頻的指標要求(并網點數據刷新周期≤100ms,測頻精度0.003Hz,控制周期≤1s,響應滯后時間thx≤2s,響應時間t0.9≤12s,調節時間ts≤15s,控制偏差≤2%)快速頻率響應系統...
光伏電站改造某20MW光伏電站通過增加快速頻率響應裝置,實現了頻率偏差的實時監測和有功功率的快速調節。改造后,系統頻率響應時間縮短至200ms以內,滿足了電網調度要求。風電場一次調頻升級某風電場采用基于倍福工業化控制系統的快速頻率響應系統,實現了頻率升高時快速減出力、頻率降低時快速增出力的功能,嚴格按照調度設定的曲線運行,提升了風電場的調頻能力。智能化與自適應控制未來快速頻率響應系統將結合人工智能技術,實現自適應調頻策略的優化,提升系統在不同工況下的響應性能。多能互補與協同控制快速頻率響應系統將與儲能、需求響應等資源協同工作,形成多能互補的調頻體系,提升電網的整體穩定性。標準化與規模化應用隨著...
FFR系統需接入并網點三相CT、PT,高頻采集電氣量,計算并網點頻率。**硬件包括**服務器(至強處理器,8GB內存,2TB硬盤)、高速測頻裝置、網絡交換機等。軟件模塊包括實時控制監測系統、遠程優化控制、SCADA接口、故障告警管理等。調頻下垂曲線通過設定頻率與有功功率的折線函數實現,支持變槳、慣量、變槳+慣量聯動控制策略。系統需滿足高電磁兼容性(IEC61000-4標準)、高電氣絕緣性能(IEC60255-5標準),斷電后數據保持時間≥72小時。當電網頻率下降時,系統快速增加機組有功輸出;頻率上升時,快速減少機組有功輸出。新款快速頻率響應系統廠家直銷快速頻率響應系統也稱為一次調頻系統,是保障...
風-儲系統協同控制的工作原理基于風力發電與儲能系統的特性互補,通過智能控制算法實現兩者之間的協調配合,以維持系統的功率平衡和穩定運行。以下是詳細的工作原理描述:一、系統構成與特性風力發電系統:風力發電系統的發電功率受到風速大小的限制,而風能固有的間歇性和波動性使單一的風能發電具有很大的波動性。儲能系統:儲能系統(如電池儲能)具有快速充放電能力,可以平滑風力發電的波動,并在需要時提供額外的功率支持。二、協同控制目標功率平衡:通過協同控制,確保風力發電與儲能系統的總輸出功率滿足負載需求,維持系統的功率平衡。穩定運行:減少因風速波動引起的功率波動,提高系統的穩定性和可靠性。優化調度隨著電力電子技術的...
技術挑戰高精度與快速性的平衡:在保證高精度頻率采集的同時,如何進一步提升系統的響應速度,是未來技術發展的關鍵。多場景適應性:不同新能源場站(如風電場、光伏電站)的拓撲結構和運行特性差異較大,系統需具備更強的適應性和靈活性。網絡安全:隨著系統的智能化和網絡化程度提高,網絡安全問題日益凸顯,需加強系統的安全防護能力。未來發展方向人工智能與大數據應用:通過引入人工智能算法和大數據分析技術,優化系統的控制策略,提升頻率調節的精細性和效率。多能互補與協同控制:將快速頻率響應系統與儲能系統、需求側響應等結合,實現多能互補和協同控制,提升電網的整體穩定性。標準化與規范化:推動快速頻率響應系統的標準化和規范化...
調頻下垂曲線與控制策略調頻下垂曲線通過設定頻率與有功功率的折線函數實現,支持變槳、慣量、變槳+慣量聯動控制策略。系統可根據電網頻率偏差快速調節機組有功輸出,抑制頻率波動。系統響應時間與精度快速頻率響應系統需滿足高精度測頻(≤±0.05Hz)和快速閉環響應(周期≤200ms)要求。系統對上級調度指令的分配所需時間短,調節時間快,控制偏差小。系統安全與可靠性系統具備斷電保護功能,斷電后統計數據保持時間不小于72小時。同時,系統需滿足高電磁兼容性和電氣絕緣性能要求,確保在惡劣環境下穩定運行。快速頻率響應系統通過實時監測電網頻率波動,自動調節新能源機組出力,在毫秒級時間內實現功率增減。耐用快速頻率響應...
新疆達坂城某50MW風電場應用FFR系統后,年節省考核費用24萬元,增發電量收益36萬元,直接收益達60萬元。寧夏某風電場通過銳電科技FFR系統改造,順利通過寧夏電科院入網試驗,滿足西北電網調頻要求。澳大利亞NEM市場FFR服務已實現商業化,電池儲能通過提供FFR服務獲得經濟補償。2016年澳大利亞南澳電網“9·28”大停電后,FFR服務成為提升電網抗擾動能力的重要手段。中國某風電場在FFR改造過程中,檢修了發電能力低下的機組,優化了通信不良的設備,提升了全場控制速度。支持一次調頻(慣性響應)與二次調頻(AGC)協同,覆蓋從毫秒級到分鐘級的頻率調節需求。新疆快速頻率響應系統技術指導光伏電站改造...
技術挑戰高精度與快速性的平衡:在保證高精度頻率采集的同時,如何進一步提升系統的響應速度,是未來技術發展的關鍵。多場景適應性:不同新能源場站(如風電場、光伏電站)的拓撲結構和運行特性差異較大,系統需具備更強的適應性和靈活性。網絡安全:隨著系統的智能化和網絡化程度提高,網絡安全問題日益凸顯,需加強系統的安全防護能力。未來發展方向人工智能與大數據應用:通過引入人工智能算法和大數據分析技術,優化系統的控制策略,提升頻率調節的精細性和效率。多能互補與協同控制:將快速頻率響應系統與儲能系統、需求側響應等結合,實現多能互補和協同控制,提升電網的整體穩定性。標準化與規范化:推動快速頻率響應系統的標準化和規范化...
新能源場站在風電場和光伏電站中,快速頻率響應系統可協調多個逆變器或風機的運行,實現有功功率的精細控制。例如,新疆達坂城地區某50MW風電場通過應用量云的快速頻率響應系統,不僅為業主節省了24萬元/年的考核費用,還通過壓線控制功能,使風電場平均每月增發電量達到9萬千瓦時,按上網電價0.34元計算,年增發電量給業主帶來至少36萬元收益,直接收益總計高達60萬元/年。微電網與儲能系統在微電網中,快速頻率響應系統作為**控制設備,可實現微電網內分布式電源、儲能系統和負荷的協同運行和能量管理。例如,在偏遠地區供電場景中,系統可整合風光儲聯合發電系統,根據電價波動和負荷需求,自動切換運行模式,確保7×24...
FFR系統可**設計,符合電力標準,滿足高精度、高頻次調節需求。支持多規約通訊(MODBUS/IEC104),具備8個以太網口和4個RS485接口。系統具備斷電保護功能,斷電后統計數據保持時間不小于72小時。通過中國電科院、新疆電科院等多機構驗收認證,具備多個區域電網項目實施經驗。在風電場應用中,FFR系統可與AGC協調控制,提升場站AGC控制效果,降低考核。七、挑戰與未來新能源機組調頻缺乏向上調節能力,需通過加配儲能或減載運行實現,增加投資成本。大容量直流閉鎖擾動下,受端系統需依靠安全穩定控制系統切負荷保障頻率安全。快速調頻資源缺乏市場激勵機制,制約FFR技術推廣。未來FFR市場構建需縮短交...
快速頻率響應項目的開展,使原本不滿足要求的發電機組及通訊網絡的速度、精度得到優化和提升,電站經過整改后,其全場控制速度、通訊速度都將得到有效提升,進而會提升場站AGC控制效果,降低AGC考核。雙碳目標下,新能源電站規模化發展,新能源電站對于電網是否“友好、穩定”是實現比較大化消納的重要約束條件,而快速頻率響應功能及AGC/AVC正是保障電站發電優先權的主要利器,也是促進新能源消納的重要手段。在“一次調頻”技術改造過程中,針對性地對發電能力低下的機組、通信不良的設備進行檢修和巡檢,對不穩定的設備進行檢查和優化,有效幫助新能源場站做一次全身檢查,及時消缺不健康的設備。青海某風電場通過GPS時鐘同步...
技術挑戰高精度與快速性的平衡:在保證高精度頻率采集的同時,如何進一步提升系統的響應速度,是未來技術發展的關鍵。多場景適應性:不同新能源場站(如風電場、光伏電站)的拓撲結構和運行特性差異較大,系統需具備更強的適應性和靈活性。網絡安全:隨著系統的智能化和網絡化程度提高,網絡安全問題日益凸顯,需加強系統的安全防護能力。未來發展方向人工智能與大數據應用:通過引入人工智能算法和大數據分析技術,優化系統的控制策略,提升頻率調節的精細性和效率。多能互補與協同控制:將快速頻率響應系統與儲能系統、需求側響應等結合,實現多能互補和協同控制,提升電網的整體穩定性。標準化與規范化:推動快速頻率響應系統的標準化和規范化...
西北某20MW光伏電站進行了快速頻率響應系統改造試點。該電站共20個子陣,每個子陣含2臺500kW光伏逆變器,2臺逆變器交流側出口通過1臺三卷分裂變升壓至35kV。改造采用了并聯式快速頻率響應控制技術,在光伏電站原有的AGC控制系統基礎上新增一套**快速頻率響應控制系統,新增加的快速頻率響應控制器與AGC系統并聯,二者之間相互通信,并與光伏箱變通信單元通信。通過“旁路”方式建立快速頻率響應控制通道,降低了對原AGC控制系統的影響,同時具有快速頻率響應速度快的優點。在頻率階躍擾動試驗中,通過頻率信號發生器輸入頻率階躍擾動信號。對于頻率階躍下擾試驗,通過AGC現地限制15%功率;對于頻率階躍上擾試...
應用場景與價值新能源場站在風電場和光伏電站中,快速頻率響應系統可協調多個逆變器或風機的運行,實現有功功率的精細控制。例如,新疆達坂城地區某50MW風電場通過應用量云的快速頻率響應系統,不僅為業主節省了24萬元/年的考核費用,還通過壓線控制功能,使風電場平均每月增發電量達到9萬千瓦時,按上網電價0.34元計算,年增發電量給業主帶來至少36萬元收益,直接收益總計高達60萬元/年。微電網與儲能系統在微電網中,快速頻率響應系統作為**控制設備,可實現微電網內分布式電源、儲能系統和負荷的協同運行和能量管理。例如,在偏遠地區供電場景中,系統可整合風光儲聯合發電系統,根據電價波動和負荷需求,自動切換運行模式...
風-儲系統協同控制的工作原理主要圍繞風力發電與儲能系統的特性互補展開,通過智能控制算法實現兩者之間的協調配合,以維持系統的功率平衡和穩定運行,以下是詳細介紹:系統構成與特性分析風力發電系統的發電功率受風速限制,而風能具有間歇性和波動性,導致單一風能發電存在較**動。儲能系統(如電池儲能)具有快速充放電能力,可平滑風力發電的波動,并在需要時提供額外功率支持。協同控制目標設定功率平衡:確保風力發電與儲能系統的總輸出功率滿足負載需求,維持系統功率平衡。穩定運行:減少因風速波動引起的功率波動,提高系統的穩定性和可靠性。優化調度:根據電網需求和儲能系統的狀態,優化風力發電和儲能系統的調度策略,提高能源利...
新疆達坂城某50MW風電場應用FFR系統后,年節省考核費用24萬元,增發電量收益36萬元,直接收益達60萬元。寧夏某風電場通過銳電科技FFR系統改造,順利通過寧夏電科院入網試驗,滿足西北電網調頻要求。澳大利亞NEM市場FFR服務已實現商業化,電池儲能通過提供FFR服務獲得經濟補償。2016年澳大利亞南澳電網“9·28”大停電后,FFR服務成為提升電網抗擾動能力的重要手段。中國某風電場在FFR改造過程中,檢修了發電能力低下的機組,優化了通信不良的設備,提升了全場控制速度。在風電場中,系統可與風機健康度管理系統聯動,提高健康度較高機組的調頻權重系數。江蘇通訊快速頻率響應系統部分快頻裝置集成防逆流智...
風-儲系統協同控制的工作原理基于風力發電與儲能系統的特性互補,通過智能控制算法實現兩者之間的協調配合,以維持系統的功率平衡和穩定運行。以下是詳細的工作原理描述:一、系統構成與特性風力發電系統:風力發電系統的發電功率受到風速大小的限制,而風能固有的間歇性和波動性使單一的風能發電具有很大的波動性。儲能系統:儲能系統(如電池儲能)具有快速充放電能力,可以平滑風力發電的波動,并在需要時提供額外的功率支持。二、協同控制目標功率平衡:通過協同控制,確保風力發電與儲能系統的總輸出功率滿足負載需求,維持系統的功率平衡。穩定運行:減少因風速波動引起的功率波動,提高系統的穩定性和可靠性。優化調度系統通過壓線控制功...
快速頻率響應系統具備高精度的頻率測量能力,頻率測量精度可達±0.002Hz,采樣周期≤50ms。同時,系統的閉環響應周期≤200ms,能夠在極短的時間內對電網頻率變化做出響應。例如,量云快速頻率響應系統解決方案中,產品性能參數并網點數據刷新周期≤10ms,測頻精度0.001Hz,控制周期≤200ms,響應滯后時間thx≤1s,響應時間t0.9≤5s,調節時間ts≤7s,控制偏差≤1%,遠優于西北電網風電調頻的指標要求(并網點數據刷新周期≤100ms,測頻精度0.003Hz,控制周期≤1s,響應滯后時間thx≤2s,響應時間t0.9≤12s,調節時間ts≤15s,控制偏差≤2%)完善調頻服務市場...