顯微鏡是一種用來對肉眼無法分辨的微小物體結構進行觀察的技術,在物理,生物,化學,材料等領域被普遍應用于物質結構以及性質的科學研究中。目前公認的顯微鏡之父是荷蘭顯微鏡學家,17世紀70年代,他用他制作的高倍顯微鏡初次對微生物進行了觀察。而明末詩人在《詠西洋顯微鏡》一詩中寫道:“大道粲中天,奇出窮海。茲鏡西洋來,微顯義兼在”,說明那個時候西方顯微鏡技術已經傳入中國。根據成像原理的不同,顯微鏡可大致分為:光學顯微鏡,電子顯微鏡,以及掃描探針顯微鏡三大類。顯微鏡光學系統的設計有三種光學系統。二手三豐MF工具顯微鏡找哪家透射電子顯微鏡:電子束透過樣品然后成像。與普通的生物透射顯微鏡較基本工作機制相同,只...
掃描電鏡即掃描電子顯微鏡,主要用于觀察樣品的表面形貌、割裂面結構、管腔內表面的結構等。工作原理:掃描電鏡是利用二次電子信號成像來觀察樣品的表面形態。用極細的電子束在樣品表面掃描,激發樣品表面放出二次電子,將產生的二次電子用特制的探測器收集,形成電信號運送到顯像管,在熒光屏上顯示物體。(細胞、組織)表面的立體構像,可攝制成照片。主要優點:景深長,所獲得的圖像立體感強,可用來觀察生物樣品的各種形貌特征。視場直徑也稱視場寬度,是指在顯微鏡下看到的圓形視場內所能容納被檢物體的實際范圍。廣州OLYMPUS BX53顯微鏡找哪家光學顯微鏡和電子顯微鏡的區別1、照明源不同電子顯微鏡所用的照明源是電子槍發出的...
光片顯微鏡的一個優點是能夠在數小時(或數天)內以非常高的時間與空間分辨率對大樣本進行成像,但由此導致的結果是會產生巨大的數據量,很容易達到TB級別,于是樣本成像的速度不再受圖像采集速度的限制,而是受數據處理電腦、存儲容量和數據傳輸速度的限制?,F在有了3D脊柱手術顯微鏡系統,將有助于科室開展高難度的頸椎病、老年人腰椎管狹窄癥、椎體滑脫癥、脊柱脊髓、脊柱畸形、椎管內神經等手術。熒光顯微鏡要設計鏡筒和光路,高度和深度通常都在50cm左右。顯微鏡光學系統的設計有三種光學系統。二手徠卡顯微鏡使用準焦螺旋調節焦距,找到物象可以說是顯微鏡使用中比較重要的一步。在操作中極易出現以下錯誤:一是在高倍鏡下直接調焦...
數值孔徑簡寫NA,數值孔徑是顯微鏡物鏡和聚光鏡的主要技術參數,是判斷兩者(尤其對物鏡而言)性能高低(即消位置色差的能力,蔡司公司的數值孔是說明消位置色差和倍率色差的能力),的重要標志。其數值的大小,分別標科在物鏡和聚光鏡的外殼上。數值孔徑(NA)是物鏡前透鏡與被檢物體之間介質的折射率(η)和孔徑角(u)半數的正玄之乘積。用公式表示如下:NA=ηsinu/2 孔徑角又稱“鏡口角”,是物鏡光軸上的物體點與物鏡前透鏡的有效直徑所形成的角度??讖浇窃酱螅M入物鏡的光通亮就越大,它與物鏡的有效直徑成正比,與焦點的距離成反比。使用準焦螺旋調節焦距,找到物象可以說是顯微鏡使用中比較重要的一步。廣州二手MF-...
為什么金相顯微鏡一般較大倍率1500倍?金相顯微鏡的放大倍數取決于它所采用的觀察波的波長,所采用的波的波長越短,能放大的倍數就越大,光是一種電磁波,可見光波長一般在380-780nm之間,所以金相顯微鏡的放大倍數就有個上限,也就是1500倍。18世紀70年代,德國物理學家發現,可見光由于其波動特性會發生衍射,因而光束不能無限聚焦。根據這個阿貝定律,可見光能聚焦的較小直徑是光波波長的三分之一,也就是200納米。一個多世紀以來,200納米的“阿貝極限”一直被認為是光學顯微鏡理論上的分辨率極限,小于這個尺寸的物體必須借助電子顯微鏡或隧道掃描顯微鏡才能觀察。除了我們在金相分析用...
大部分顯微鏡使用一段時間后都會產生鏡片的外面被沾污或發生霉變。尤其是高倍物鏡40X,在做《觀察植物細胞的質壁分離與復原》實驗時,極容易被糖液污染。如鏡頭被污染不及時清洗干凈就會發生霉變。處理的辦法是先用干凈柔軟的綢布蘸溫水清洗掉糖液等污染物,后用干綢布擦干,再用長纖維脫脂棉蘸些鏡頭清洗液清洗,接著用吹風球吹干。要注意的是清洗液千萬不能滲入到物鏡鏡片內部。因為為了達到所需要的放大倍數,高倍物鏡的鏡片,需要緊緊地膠接在一起。膠是透明的,且非常薄,一旦這層膠被酒精等溶劑溶解后,光線通過這兩片鏡片時,光路就會發生變化。觀察效果會受到很大影響。所以在清洗時不要讓酒精等溶劑滲入到物鏡鏡片的內部。一般顯微鏡...
顯微鏡的照明裝置:顯微鏡的照明方法按其照明光束的形成,可分為“透射式照明”,和“落射式照明”兩大類。前者適用于透明或半透明的被檢物體,絕大數生物顯微鏡屬于此類照明法;后者則適用于非透明的被檢物體,光源來自上方,又稱“反射式或落射式照明”。主要應用與金相顯微鏡或熒光鏡檢法。透射式照明:中心照明:這是較常用的透射式照明法,其特點是照明光束的中軸與顯微鏡的光軸同在一條直線上。它又分為“臨界照明”和“柯勒照明”兩種。暗視野實際是暗場照明。深圳MF-A2010D顯微鏡廠商顯微鏡這必須觀察溶孔與圍巖介質的聯系形式和其他結構、徠卡構造的關系來確定。某些自生礦物(如海綠石、黃鐵礦等)的形成及同生構造的形成,顯...
偏光顯微鏡被普遍地應用在礦物、化學等領域,在生物學和植物學也有應用。偏光顯微是鑒定物質細微結構光學性質的一種顯微鏡。凡具有雙折射性的物質,在偏光顯微鏡下就能分辨的清楚,當然這些物質也可用染色法來進行觀察,但有些則不可能,而必須利用偏光顯微鏡。偏光顯微鏡的特點,就是將普通光改變為偏振光進行鏡檢的方法,以鑒別某一物質是單折射性(各向同性)或雙折射性(各向異性)。雙折射性是晶體的基本特征。因此,偏光顯微鏡被普遍地應用在礦物、高分子、纖維、玻璃、半導體、化學等領域。在生物學中,很多結構也具有雙折射性,這就需要利用偏光顯微鏡加以區分。在植物學方面,如鑒別纖維、染色體、紡錘絲、淀粉粒、細胞壁以及細胞質與組...
為什么金相顯微鏡一般較大倍率1500倍?金相顯微鏡的放大倍數取決于它所采用的觀察波的波長,所采用的波的波長越短,能放大的倍數就越大,光是一種電磁波,可見光波長一般在380-780nm之間,所以金相顯微鏡的放大倍數就有個上限,也就是1500倍。18世紀70年代,德國物理學家發現,可見光由于其波動特性會發生衍射,因而光束不能無限聚焦。根據這個阿貝定律,可見光能聚焦的較小直徑是光波波長的三分之一,也就是200納米。一個多世紀以來,200納米的“阿貝極限”一直被認為是光學顯微鏡理論上的分辨率極限,小于這個尺寸的物體必須借助電子顯微鏡或隧道掃描顯微鏡才能觀察。除了我們在金相分析用...
電子顯微鏡是高級技術產品的誕生物,與我們平時用的光學顯微鏡有相似的地方,但又與光學顯微鏡有極大的不同。首先,光學顯微鏡是利用光源。而電鏡利用的是電子束,并且兩者可看到的結果有所差別,單且說放大倍數的不同,比如觀察一個細胞,光鏡只能看到細胞和部分細胞器,像線粒體和葉綠體,但是只能看到其細胞的存在,看不到細胞器的具體結構。而電子顯微鏡可以更詳細的看到細胞器的精細結構,甚至可以看到像蛋白質這樣的大分子。電子顯微鏡包括透射式電子顯微鏡、掃描式電子顯微鏡、反射式電子顯微鏡和發射式電子顯微鏡等。其中掃描電鏡應用更為普遍。掃描電子顯微鏡在材料的分析和研究方面應用十分普遍,主要應用于材料斷口分析、微區成分分析...
光學顯微鏡,通常皆由光學部分、照明部分和機械部分組成。無疑光學部分是為關鍵的,它由目鏡和物鏡組成。早于1590年,荷蘭和意大利的眼鏡制造者已經造出類似顯微鏡的放大儀器。光學顯微鏡的種類很多,主要有明視野顯微鏡(普通光學顯微鏡)、暗視野顯微鏡、熒光顯微鏡、相差顯微鏡、激光掃描共聚焦顯微鏡、偏光顯微鏡、微分干涉差顯微鏡、倒置顯微鏡。而電子顯微鏡有與光學顯微鏡相似的基本結構特征,但它有著比光學顯微鏡高得多的對物體的放大及分辨本領,它將電子流作為一種新的光源,使物體成像。自1938年Ruska發明首臺透射電子顯微鏡至今,除了透射電鏡本身的性能不斷的提高外,還發展了其他多種類型的電鏡。如掃描電鏡、分析電...
真空系統:為了保證真在整個通道中只與試樣發生相互作用,而不與空氣分子發生碰撞,因此,整個電子通道從電子槍至照相底板盒都必須置于真空系統之內,一般真空度為10-4~10-7毫米汞柱。透射電鏡需要兩部分電源:一是供給電子槍的高壓部分,二是供給電磁透鏡的低壓穩流部分。電源的穩定性是電鏡性能好壞的一個極為重要的標志。所以,對供電系統的主要要求是產生高穩定的加速電壓和各透鏡的激磁電流。近代儀器除了上述電源部分外,尚有自動操作程序控制系統和數據處理的計算機系統。所謂特種物鏡是在上述顯微鏡物鏡的基礎上,專門為達到某些特定的觀察效果而設計制造的。廣東二手尼康體視顯微鏡廠現階段目前市面上所市場銷售的光學顯微鏡類...
使用顯微鏡高倍物鏡之前,必須先用低倍物鏡找到觀察的物象,并調到視野的正中心,然后轉動轉換器再換高倍鏡。換用高倍鏡后,視野內亮度變暗,因此一般選用較大的光圈并使用反光鏡的凹面,然后調節細準焦螺旋。觀看的物體數目變少,但是體積變大。整理:實驗完畢,把顯微鏡的外表擦拭干凈。轉動轉換器,把兩個物鏡偏到兩旁,并將鏡筒緩緩下降到低處,反光鏡豎直放置。接著把顯微鏡放進鏡箱里,送回原處。電子顯微鏡和光學顯微鏡的區別主要有以下五點:光學顯微鏡(以下簡稱光鏡)使用可見光作為光源,而電子顯微鏡(以下簡稱電鏡)利用高能短波長電子束代替可見光。光鏡的聚焦鏡使用光學學鏡片,電鏡則使用電磁透鏡。成像系統不同。放大倍數不同,...
光學顯微鏡是利用光學原理,把人眼所不能分辨的微小物體放大成像,以供人們提取微細結構信息的光學儀器。顯微鏡的光學系統主要包括物鏡、目鏡、反光鏡和聚光器四個部件。廣義的說也包括照明光源、濾光器、蓋玻片和載玻片等。機械裝置是顯微鏡的重要組成部分。其作用是固定與調節光學鏡頭,固定與移動標本等。主要有鏡座、鏡臂、載物臺、鏡筒、物鏡轉換器、與調焦裝置組成。顯微鏡是利用凸透鏡的放大成像原理,將人眼不能分辨的微小物體放大到人眼能分辨的尺寸,其主要是增大近處微小物體對眼睛的張角(視角大的物體在視網膜上成像大),用角放大率M表示它們的放大本領。因同一件物體對眼睛的張角與物體離眼睛的距離有關,所以一般規定像離眼睛距...
使用顯微鏡高倍物鏡之前,必須先用低倍物鏡找到觀察的物象,并調到視野的正中心,然后轉動轉換器再換高倍鏡。換用高倍鏡后,視野內亮度變暗,因此一般選用較大的光圈并使用反光鏡的凹面,然后調節細準焦螺旋。觀看的物體數目變少,但是體積變大。整理:實驗完畢,把顯微鏡的外表擦拭干凈。轉動轉換器,把兩個物鏡偏到兩旁,并將鏡筒緩緩下降到低處,反光鏡豎直放置。接著把顯微鏡放進鏡箱里,送回原處。電子顯微鏡和光學顯微鏡的區別主要有以下五點:光學顯微鏡(以下簡稱光鏡)使用可見光作為光源,而電子顯微鏡(以下簡稱電鏡)利用高能短波長電子束代替可見光。光鏡的聚焦鏡使用光學學鏡片,電鏡則使用電磁透鏡。成像系統不同。放大倍數不同,...
冷凍電鏡已有幾十年的歷史了,它的原理是向快速冷凍的樣品發射電子并記錄生成的圖像從而確定其形狀。探測回彈電子的技術以及圖像分析軟件的進步觸發了一場始于2013年的“分辨率改變”,并讓研究人員得到了比較清晰的蛋白質結構——幾乎與利用X射線晶體技術得到的結果一樣好。X射線晶體技術的出現時間更早,主要根據蛋白質晶體被X射線轟擊時形成的衍射圖案推斷蛋白質的結構。后續的軟硬件更新使得冷凍電鏡的結構分辨率得到了更大的提升。但是科學家還是要依賴X射線晶體學才能獲得原子分辨率的結構。問題是,研究人員可能要花幾個月到幾年的時間才能使蛋白質結晶,而且許多醫學上重要的蛋白質不會形成可用的晶體;相比之下,冷凍電鏡只需要...
原子力顯微鏡因其超高的成像分辨率,常常獲得令人驚艷的結果。自然界里,氫原子與電負性大的原子X以共價鍵結合,它們若與電負性大、半徑小的的原子Z(O、F、N)接觸生成X-H…Z形式的一種特殊的分子間或分子內相互作用,則為氫鍵。這一教科書上的定義,一直以來為大家所熟知, 然而人們始終無法窺探其原本“容貌”。中國國家納米科學中心的科學家們利用原子力顯微鏡技術實現了對化學分子間作用的直接成像,在國際上初次直接觀察到了分子間的氫鍵。這一研究成果使我們教科書里的“氫鍵”變成了“眼見為實”。隨后,又有科學家利用原子力顯微鏡對單分子中氫鍵的強度進行研究,這一測量結果與理論計算精確吻合。無論您是經常使用顯微鏡還是...
為什么金相顯微鏡一般較大倍率1500倍?金相顯微鏡的放大倍數取決于它所采用的觀察波的波長,所采用的波的波長越短,能放大的倍數就越大,光是一種電磁波,可見光波長一般在380-780nm之間,所以金相顯微鏡的放大倍數就有個上限,也就是1500倍。18世紀70年代,德國物理學家恩斯特?阿貝發現,可見光由于其波動特性會發生衍射,因而光束不能無限聚焦。根據這個阿貝定律,可見光能聚焦的較小直徑是光波波長的三分之一,也就是200納米。一個多世紀以來,200納米的“阿貝極限”一直被認為是光學顯微鏡理論上的分辨率極限,小于這個尺寸的物體必須借助電子顯微鏡或隧道掃描顯微鏡才能觀察。除了我們...
光學顯微鏡主要由目鏡、物鏡、載物臺和反光鏡組成。目鏡和物鏡都是凸透鏡,焦距不同。物鏡的凸透鏡焦距小于目鏡的凸透鏡的焦距。物鏡相當于投影儀的鏡頭,物體通過物鏡成倒立、放大的實像。目鏡相當于普通的放大鏡,該實像又通過目鏡成正立、放大的虛像。經顯微鏡到人眼的物體都成倒立放大的虛像。反光鏡用來反射,照亮被觀察的物體。反光鏡一般有兩個反射面:一個是平面鏡,在光線較強時使用;一個是凹面鏡,在光線較弱時使用,可會聚光線。電子顯微鏡是根據電子光學原理,用電子束和電子透鏡代替光束和光學透鏡,使物質的細微結構在非常高的放大倍數下成像的儀器。對于金相顯微鏡來說,我們可以通過計算機的顯示屏來觀察顯微組織的實時動態圖像...
顯微鏡是一個非?;\統的叫法。很多顯微鏡名字很類似,但工作原理區別很大。很多顯微鏡名字不一樣,其實原理基本相同。光學顯微鏡:就是我們初中就用過的普通顯微鏡,通過光學鏡片提升垂軸放大率。熒光顯微鏡:原理與光學顯微鏡類似,不同之處在于用的光一般是單色激光,樣品受激光照射后發出波長更長的光激光共聚焦顯微鏡:在熒光顯微鏡基礎上加上共聚焦技術,即通過樣品反射光在顯微鏡中的像點。共聚焦技術是逐點成像,速度較慢,但可以自動聚焦,測量樣品表面不平整。金相顯微鏡:基本就是光學顯微鏡,主要用于看金屬晶格結構,巖石結構等,地質和金屬材料用的比較多,這個就是根據用途起了一個名字。利用調焦旋鈕可以驅動調焦機構,使載物臺粗...
物鏡是顯微鏡較重要的光學部件,利用光線使被檢物體一次成像,因而直接關系和影響成像的質量和各項光學技術參數,是衡量一臺顯微鏡質量的首要標準。國際物鏡的檢測標準是以蔡司物鏡為基準的。物鏡的結構復雜,制作精密,由于對像差的校正,金屬的物鏡筒內由相隔一定距離并被固定的透鏡組組合而成。物鏡有許多具體的要求,如合軸,齊焦。齊焦既是在鏡檢時,當用某一倍率的物鏡觀察圖像清晰后,在轉換另一倍率的物鏡時,其成像亦應基本清晰,而且像的中心偏離也應該在一定的范圍內,也就是合軸程度。齊焦性能的優劣和合軸程度的高低是顯微鏡質量的一個重要標志,它是與物鏡的本身質量和物鏡轉換器的精度有關。顯微鏡光學系統有三種光學系統:長筒光...
顧名思義,電子顯微鏡使用電子成像,就像光學顯微鏡利用可見光成像。一臺成像設備的較佳分辨率主要取決于介質的波長。由于電子的波長比光波長小得多,電子顯微鏡的分辨率要優于光學顯微鏡。實際上通常超過1000 倍。電子顯微鏡有兩種主要的類型:透射電子顯微鏡(TEM),它探測穿過薄樣品的電子來成像;掃描電子顯微鏡(SEM),它利用被反射或撞擊樣品的近表面區域的電子來產生圖像。我們著重講述掃描電鏡 SEM。在這種的電子顯微鏡中,電子束以光柵模式逐行掃描樣品。首先,電子由腔室頂端的電子源(俗稱燈絲)產生。電子束發射是因為熱能克服了材料的功函數。他們隨后被加速并被帶正電的陽極所吸引。您可以在這篇指導中找到更多關...
光學顯微鏡,通常皆由光學部分、照明部分和機械部分組成。無疑光學部分是為關鍵的,它由目鏡和物鏡組成。早于1590年,荷蘭和意大利的眼鏡制造者已經造出類似顯微鏡的放大儀器。光學顯微鏡的種類很多,主要有明視野顯微鏡(普通光學顯微鏡)、暗視野顯微鏡、熒光顯微鏡、相差顯微鏡、激光掃描共聚焦顯微鏡、偏光顯微鏡、微分干涉差顯微鏡、倒置顯微鏡。而電子顯微鏡有與光學顯微鏡相似的基本結構特征,但它有著比光學顯微鏡高得多的對物體的放大及分辨本領,它將電子流作為一種新的光源,使物體成像。自1938年Ruska發明首臺透射電子顯微鏡至今,除了透射電鏡本身的性能不斷的提高外,還發展了其他多種類型的電鏡。如掃描電鏡、分析電...
顧名思義,電子顯微鏡使用電子成像,就像光學顯微鏡利用可見光成像。一臺成像設備的較佳分辨率主要取決于介質的波長。由于電子的波長比光波長小得多,電子顯微鏡的分辨率要優于光學顯微鏡。實際上通常超過1000 倍。電子顯微鏡有兩種主要的類型:透射電子顯微鏡(TEM),它探測穿過薄樣品的電子來成像;掃描電子顯微鏡(SEM),它利用被反射或撞擊樣品的近表面區域的電子來產生圖像。我們著重講述掃描電鏡 SEM。在這種的電子顯微鏡中,電子束以光柵模式逐行掃描樣品。首先,電子由腔室頂端的電子源(俗稱燈絲)產生。電子束發射是因為熱能克服了材料的功函數。他們隨后被加速并被帶正電的陽極所吸引。您可以在這篇指導中找到更多關...
金相顯微鏡經常被用來觀察金屬和礦物等不透明物體金相組織,這些不透明物體是無法通過普通的投射光顯微鏡觀察其顯微組織的。金相顯微鏡這個概念是從金相學中衍生出來的,具有穩定、清晰、分辨率高等特點。普通的顯微鏡只能通過目鏡來觀察顯微組織,而對于金相顯微鏡來說,我們可以通過計算機的顯示屏來觀察顯微組織的實時動態圖像。金相顯微鏡的穩定性:金相顯微鏡的特點尤為多,如穩定高、清晰度好、分辨率高等等。金相顯微鏡的出現極大地推進了生物科學的研究,使生物科學從宏觀到微觀,從顯微水平發展到超顯微水平;將形態和組成,結構和功能逐漸地交融起來,使人們對細胞內的超顯微結構及其功能得到進一步的認識。 顯微鏡低倍下調焦時先上升...
掃描探針顯微鏡是一系列使用特殊探針與樣品進行逐點掃描,測量針尖與樣品之間的相互作用,采集其物理性質并獲得圖像的顯微鏡的統稱。代表性的顯微鏡有掃描隧道顯微鏡,原子力顯微鏡,近場光學顯微鏡等。如果說電子顯微鏡還有一點脫胎于光學顯微鏡的影子,那么掃描探針顯微鏡已經完全擺脫了“鏡”的束縛,發展出了了一條完全不同顯微技術的道路。掃描隧道顯微鏡是STM 使掃描針尖與樣品之間距離極近(1納米以內)并施加電壓,利用量子力學中的隧穿效應,使電子能夠穿過中間的真空區域形成電流,電流的大小反映了樣品對應位置的局域態密度,從而進行成像。STM可以在真空、大氣、 液體等多種條件下進行無破壞測, 量。目前橫向分辨率已經達...
為什么金相顯微鏡一般較大倍率1500倍?金相顯微鏡的放大倍數取決于它所采用的觀察波的波長,所采用的波的波長越短,能放大的倍數就越大,光是一種電磁波,可見光波長一般在380-780nm之間,所以金相顯微鏡的放大倍數就有個上限,也就是1500倍。18世紀70年代,德國物理學家恩斯特?阿貝發現,可見光由于其波動特性會發生衍射,因而光束不能無限聚焦。根據這個阿貝定律,可見光能聚焦的較小直徑是光波波長的三分之一,也就是200納米。一個多世紀以來,200納米的“阿貝極限”一直被認為是光學顯微鏡理論上的分辨率極限,小于這個尺寸的物體必須借助電子顯微鏡或隧道掃描顯微鏡才能觀察。除了我們...
與光學顯微鏡類似,掃描電鏡 SEM 使用透鏡來控制電子的路徑。因為電子不能透過玻璃,這里所用的是電磁透鏡。他們簡單的由線圈和金屬極片構成。當電流通過線圈,就會產生磁場。電子對磁場十分敏感,電子在顯微鏡腔室的路徑就可以由這些電磁透鏡控制——調節電流大小可以控制磁場強度。通常,電磁透鏡有兩種:會聚鏡,電子通往樣品時首先遇到的透鏡。會聚鏡會在電子束錐角張開之前將電子束會聚,電子在轟擊樣品之前會再由物鏡會聚一次。會聚鏡決定了電子束的尺寸(決定著分辨率),物鏡則主要負責將電子束聚焦到樣品上。掃描電鏡的光路系統同樣還包含了用于將電子束在樣品表面光柵化的掃描線圈。在許多時候,孔徑光闌會結合透鏡一起控制電子束...
散射式近場光學顯微鏡(簡稱s-SNOM )作為新型近場光學技術,使用散射點代替傳統孔徑(或光纖),從而獲得更高的空間分辨率。s-SNOM 的基本原理是:一個被照明的顆粒會在其周圍形成增強的光場,而這個近場會被其附近的樣品改變,這種近場互相作用會導致在遠場接受到的散射光帶有樣品局部的光學性質。在實際應用中,普通的AFM 針尖即可被用作散射源,而其近場光學空間分辨率只由AFM 針尖的曲率半徑決定,大約為10-30nm,而與照射光波長無關。立體顯微鏡采用兩個立的光學通路生成三維的光學影像,因此也叫實體顯微鏡、解剖顯微鏡。廣州MF-A2010D顯微鏡價位自從1965年一臺商品掃描電鏡問世以來,經過40...
數碼顯微鏡的優勢在于儀器的人機工程學設計。由于監控器會直接顯示樣品圖像,用戶可以在保持舒適、放松的直立坐姿的同時,還能即時觀察樣品,并利用軟件分析樣品圖像,保證用戶能以舒適的姿態高效地完成工作。在需要處理高通量樣品,或每天需要在顯微鏡上花費較長時間的情況下,數碼顯微鏡的人機工程學設計就顯得意義非凡了。此外,很多數碼顯微鏡還提供允許存儲多個用戶配置文件的軟件。在多人共用一臺顯微鏡時,這項功能非常有用,憑借這項功能,每個用戶只需選擇自己的顯微鏡配置文件,幾乎無需調節顯微鏡工作臺,即可輕松開始工作。顯微鏡提高景深的辦法顯微鏡景深是指顯微鏡所能觀察到的焦距范圍。廣東二手尼康顯微鏡有用嗎無論您是經常使用...