一、放線菌發酵過程中溶氧電極的選型與優化研究,放線菌發酵的特點放線菌(Actinomycetes)是一類具有分枝菌絲和分生孢子的原核生物,因其菌落呈放射狀而得名。1.其結構特征如下:(1)營養菌絲(基內菌絲):負責吸收營養物質,部分可產生色素,是菌種鑒定的重要依據。(2)氣生菌絲:生長于營養菌絲之上,進一步發育為孢子絲,形成繁殖孢子。2.放線菌發酵具有以下特點:(1)生長緩慢:發酵周期較長。(2)次級代謝產物為主:目標產物多在中后期大量合成。(3)高粘度:發酵液粘度大,易發生掛壁現象。(4)剪切敏感:菌絲對機械剪切力較為敏感,易受損。二、溶氧控制的難點,在放線菌發酵過程中,溶氧控制面臨以下挑戰:1.氧傳遞效率低:中后期菌絲體粘度高,導致氧傳遞效率下降,混合效果差。2.剪切力限制:因菌絲不耐剪切,無法通過提高攪拌速度改善溶氧。3.溶解氧電極可靠性問題:菌絲堵塞問題,發酵中后期,菌絲易堵塞傳感器測量頭,導致數據失真。通過溶解氧電極的連續監測,可以建立發酵過程的動力學模型,預測產物積累趨勢。高溫滅菌溶解氧電極哪家好
漁業和水產養殖離不開溶氧電極的精細監測。對于魚類和其他水生生物而言,溶解氧是生存的必要條件。溶氧電極能夠實時反饋水體中的溶解氧濃度,養殖人員依據這一數據,可及時調整養殖環境。比如,當溶氧濃度過低時,可通過增加增氧設備的運行功率或開啟新的增氧裝置,來提高水體溶氧水平;若溶氧濃度過高,可能會對水生生物造成氣栓等危害,此時可適當減少增氧操作。通過溶氧電極的輔助,能夠保障水生生物健康生長,提高養殖效益 。微基生物杭州生物發酵用溶氧電極污水處理廠使用溶氧電極控制曝氣池工況,提升活性污泥處理效率。
雙孢蘑菇、短小芽孢桿菌,在生物發酵產酶過程中對溶氧電極水平的具體需求和差異說明。1、雙孢蘑菇(Agaricus bisporus MJ-0811)在發酵過程中,攪拌轉速和通氣量對菌體生長和胞外多糖分泌具有較大影響。研究表明,較佳的培養條件為溫度 25℃、攪拌轉速 160r/min、通氣量 0.9vvm。在此條件下,培養 5d,菌體生物量至高達 20.81g/L,胞外多糖產量峰值達 3.75g/L。2、短小芽孢桿菌在生產果膠裂解酶時,研究了初始 pH、碳源和氮源、通氣、鹽和磷酸鹽對微生物生長、果膠裂解酶活性和釋放總蛋白的影響。確定了比較好的果膠和硫酸銨濃度分別為 1%(w/v)和 0.05%(w/v),在 pH 為 8、溫度為 30℃、轉速為 150rpm 時,較大微生物比生長速率和果膠裂解酶活性分別為 0.0381(h?1)、14.05U/mL。同時,還確定了生物反應器中的氧傳遞系數(kLa)和氧攝取速率。結果表明,增加空氣進料速率會增加 kLa 值,短小芽孢桿菌主要產生堿性果膠裂解酶,且活性的較好 pH 和溫度分別為 10 和 40℃。
溶氧電極在生物科學研究領域有著重要應用。在細胞培養實驗中,細胞的生長和代謝對培養環境中的溶解氧濃度十分敏感。通過在培養體系中安裝溶氧電極,科研人員能夠實時掌握溶解氧的變化,及時調整培養條件,如調節通氣量等,為細胞提供適宜的生長環境,促進細胞的增殖與分化。在微生物發酵研究中,溶氧電極可用于監測發酵過程中微生物對氧氣的利用情況,幫助優化發酵工藝,提高目標產物的產量,為生物制品的研發與生產提供有力支持 。智能溶氧電極內置 MCU,支持自動校準、數據存儲和故障診斷。
隨著自動化技術的不斷發展,溶氧電極在發酵罐廠中的自動化控制應用也越來越多。通過將溶氧電極與自動化控制系統相結合,可以實現對發酵過程的自動控制,提高生產效率和產品質量。例如,自動化控制系統可以根據溶氧電極測量得到的數據,自動調整通氣量、攪拌速度等參數,實現對發酵過程的精確控制。在現代發酵罐廠中,遠程監控技術得到了大量的應用。通過將溶氧電極與遠程監控系統相結合,可以實現對發酵過程的遠程監控,提高生產管理的效率和便利性。例如,管理人員可以通過遠程監控系統實時查看溶氧電極測量得到的數據,了解發酵過程的運行情況,并及時采取相應的措施進行調整。在微藻培養中,溶解氧電極不僅監測呼吸耗氧,還反映光合作用的產氧動態。杭州生物發酵用溶氧電極
空氣校準中,溶氧電極在 20.9% 氧濃度(標準大氣壓)下標定滿量程。高溫滅菌溶解氧電極哪家好
溶氧電極的工作原理:溶氧電極作為測定液體中溶解氧濃度的關鍵裝置,其工作原理基于氧分子在金屬表面的氧化還原反應。當下常見的覆膜氧電極,陰極多采用銀、鉑等貴金屬,陽極則是錫、鉛等活潑金屬,以醋酸緩沖液作為電解質。測量時,液體中的氧透過半透膜抵達陰極,促使兩極間產生電子流動,進而形成電流。氧濃度與電流強度呈正相關,如此一來,溶氧濃度便轉化為電訊號,經放大處理后,可在顯示儀或記錄儀上直觀呈現。這種將化學過程轉化為電信號測量的方式,為準確掌握液體溶氧情況提供了有效途徑。高溫滅菌溶解氧電極哪家好