在發酵行業,溶氧電極用于監測發酵液中的溶氧值(DO)。發酵過程中,微生物的生長和代謝活動需要消耗氧氣,不同階段對溶氧濃度有不同要求。溶氧電極可實時反饋發酵液中的溶氧情況,發酵工程師根據這些數據,調整攪拌速度、通氣量等參數,確保微生物在適宜的溶氧環境下進行發酵,提高發酵產物的產量和質量。例如在發酵中,精細控制溶氧濃度,可使的發酵單位大幅提高 。溶氧電極的使用壽命與維護保養息息相關。正確的使用和維護能夠延長電極的使用壽命,降低使用成本。如按照規定的操作流程進行安裝、校準和使用,避免電極受到碰撞、擠壓等物理損傷。定期檢查電極的膜是否有破損、污染,及時更換損壞或污染嚴重的膜。對于消耗性的陽極材料,在其損耗到一定程度時,及時進行更換。此外,將電極存放在適宜的環境中,如溫度在 - 10…60 °C,干放儲存并注意防潮,也有助于延長其使用壽命 。在工業發酵中,溶解氧電極的長期穩定性直接關系到生產效率和產品質量的一致性。江蘇污水處理用溶解氧電極廠家
化工生產中,溶氧電極同樣不可或缺。在各類化工反應中,不同的反應對氧氣濃度有特定要求。溶氧電極可用于監測反應過程中的氧氣濃度,為反應提供穩定且適宜的條件。以石油化工中的部分氧化反應為例,精細控制氧氣濃度能提高目標產物的選擇性和收率,降低副反應的發生概率。此外,在化工產品的質量檢測環節,溶氧電極也可用于檢測產品中溶解氧的含量,確保產品符合質量標準 ,保障化工生產的高效與穩定。微基智慧科技(江蘇)有限公司溶氧電極江蘇污水處理用溶解氧電極廠家溶解氧電極與代謝流分析結合,可深入理解氧氣對細胞代謝網絡的影響機制。
如何結合先進的控制技術實現對溶氧電極水平的精確控制以提高產酶效率?1、采用模型參考自適應控制(MRAC)MohamedBahita等人在2022年的研究中,基于遞歸二乘識別方法,提出了一種模型參考自適應控制(MRAC)應用于非線性系統中溶解氧濃度的控制,該系統為活性污泥生物反應器,大量用于廢水處理和凈化操作。通過與經典的PI控制方法進行比較,驗證了該方法在MATLAB環境中的有效性。這種自適應控制技術能夠根據系統的實際運行情況不斷調整控制參數,以實現對溶氧水平的精確控制,從而為提高產酶效率創造有利條件。2、分階段供氧控制策略何寧等人在2004年的研究中,在3L發酵罐上系統研究了溶氧水平對谷氨酸棒桿菌菌體生長及新型生物絮凝劑REA-11合成的影響,提出了生物絮凝劑REA-11合成的分階段供氧控制策略。具體為發酵過程0-16h維持體積傳氧系數kLa為100h?1,16h后降低kLa為40h?1至發酵結束,整個發酵過程通氣量保持在1L?L?1?min?1。采用該分階段供氧控制策略,生物絮凝劑產量達到900mg?L?1,發酵周期縮短,實現了高細胞生長速率和高產物產率的統一。這種控制策略可以根據不同發酵階段的需求,精確調整溶氧水平,為提高產酶效率提供了一種有效的方法。
隨著科技的不斷進步,溶氧電極的性能也在不斷提高。未來,溶氧電極將朝著更加智能化、高精度、高穩定性的方向發展。例如,智能化溶氧電極可以實現自動校準、故障診斷等功能,提高了使用的便利性和可靠性;高精度溶氧電極可以實現更加準確的測量,為發酵過程的優化提供更加精確的數據支持;高穩定性溶氧電極可以在惡劣的環境下長期穩定工作,降低了維護成本。在發酵罐廠中,溶氧電極可以通過優化發酵條件,實現節能降耗的目的。例如,通過實時監測溶氧水平,調整通氣量和攪拌速度,可以避免過度通氣和攪拌,從而降低能源消耗。此外,溶氧電極還可以與節能控制系統相結合,實現更加智能化的節能控制。二維材料(如石墨烯)用于制備超薄透氣膜,縮短響應時間。
在大規模生物發酵生產中,改善溶氧電極水平均勻性對于提高發酵效率和產品質量至關重要,以下是優化攪拌轉速和通氣量這一方法的講解說明。1、以雙孢蘑菇為實驗菌種,采用 5L 自控式發酵罐培養研究溶氧控制條件(攪拌轉速和通氣量)對雙孢菇發酵過程的影響。結果表明,攪拌轉速和通氣量對雙孢菇的菌體生長和胞外多糖分泌具有顯明顯影響。得出較佳的培養條件為:溫度 25℃、攪拌轉速 160r/min、通氣量 0.9vvm,此條件下,培養 5d,菌體生物量多達 20.81g/L,胞外多糖產量多達 3.75g/L。2、在大規模生物發酵生產中,可以根據不同的發酵菌種和生產要求,優化攪拌轉速和通氣量,以提高溶氧水平的均勻性。溶氧電極的溫度補償功能校正溫度對氧溶解度和膜滲透性的影響。山東耐消殺溶氧電極
溶氧電極插入溶液時需確保膜面完全浸沒,避免空氣殘留。江蘇污水處理用溶解氧電極廠家
不同菌種發酵過程中的應用差異:1、以雙孢蘑菇為實驗菌種,采用5L自控式發酵罐培養研究,溶氧控制條件對雙孢菇發酵過程的影響。在此過程中,考察了發酵過程中菌體生物量、胞外多糖產量、相對溶氧、葡萄糖含量的變化。這表明在雙孢蘑菇發酵過程中,溶氧電極可以用于監測這些關鍵參數的變化,從而優化溶氧控制條件,提高菌體生物量和胞外多糖產量。2、對于淀粉液化芽孢桿菌BS5582在IOL-全自動發酵罐規模生產β-葡聚糖酶的過程中,通過控制通氣量、罐壓和攪拌轉速進行溶氧優化。優化后β-葡聚糖酶酶活在44h達到511U/mL,比優化前提高了122.76%6。這說明在淀粉液化芽孢桿菌發酵過程中,溶氧電極可用于指導溶氧優化,提高酶的產量。3、在短梗霉發酵過程中,將短梗霉菌株經2.7L發酵罐發酵,研究溶氧對其發酵的影響。結果發現,在70%溶氧條件下,不同短梗霉菌株的聚蘋果酸和蘋果酸產量有明顯差異,而在10%溶氧條件下,產量降低明顯。這表明在短梗霉發酵過程中,溶氧電極可用于監測溶氧對發酵產酸的影響,為優化發酵條件提供依據。江蘇污水處理用溶解氧電極廠家